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Extension of the concept of the effective diameter to steady-state filtration flows allows us to suggest a 
generalized ideal model of a porous medium combining all the existing models (models of nonintersecting 

cylindrical capillaries, of parallel plane pores, etc.) and possible calculation procedures based on the notions 

of a filtering medium in the form of longitudinal parallel channels with a certain shape of the cross section. 

Results of a study of a filtration flow are presented for a porous medium. The study was carried out using 
the calculation model suggested. 

Determination of the profit is achieved upon extension of the concept of the effective diameter [1 ] to 

isothermal steady-state filtration flows of a viscous Newtonian liquid. Whereas, in the case of using the hydraulic 

diameter dh as a characteristic dimension, the equations of the Darcy coefficient 2ah -- A/Redh are a family of 

congruent straight lines on the plane 2dh--Redh in the logarithmic anamorphosis (Fig. la), in the case of using the 

effective diameter as a geometric scale 

de = (Ad/A) 0.5 dh = Kldh (1) 

the relations )].de = f(Rede) (where 2de -- K12dh and Rede = K1Redh are the modified Darcy coefficient and the 

modified Reynolds  number) are described by the s ingle  straight  line 2de = Ad/Rede on the  p lane  

log 2de--log Rede (Fig. lb). This means that in a laminar flow use of de in the definition of the modified Reynolds 

number and simplex 7 --- l/de (the relative length) ensures strict similarity of the flows in open channels or 

noncircular pressure ducts to the flow in a circular pressure tube in the sense that it allows absolutely accurate 

hydraulic calculations of pressure and gravity flows from the formulas for a circular pressure tube with de 

substituted for d in them: 

AE = Adlv2 / (2de Rede), (2) 

l.cr 
Rede = vde/v -< Ke d = 2320. (3) 

When using formulas (2) and (3) for experimental investigation of laminar filtration, the parameter d e can 

be considered as an effective diameter of pores or a translating element in the porous medium, and the calculation 

model itself can be reasonably called a generalized ideal model of the porous medium since the shape of the 

cross-section of parallel prismatic capillaries is not specified and can be arbitrary (for example, with the cross- 

section as a cylinder, a flat slot, an equilateral triangle, a square, an ellipse, a trigonal or tetragonal asterisc, i.e., 
translating elements that are formed in the dense packing of circular rods located at the angles of the equilateral 

triangle or a square, etc.). 

For a laminar filtration flow from the Darcy formula (2) describing the hydraulic resistance of laminar 

pressure and gravity flows with i = AE/(lg) and vf = vm, the following relation is obtained to be used for calculating 

the effective pore diameter: 
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Fig. 1. Shapes of the equations of the Darcy coefficient 2L in noncircular ducts 

and channels in the zone of laminar flow when hydraulic (a) and effective (b) 

diameters are used as a characteristic dimension L. 

de = [AdVVf/ (i2rng ) ]0.5. 

From relation (4) with K-- vrv(ig) the following formula can be obtained: 

d e = (0.5 A d K / m )  0"5 , 

(4) 

(5) 

which relates the effective pore diameter to the permeability coefficient of the porous medium K = C v / g ,  where C 

is the filtration coefficient entering into the linear relation suggested by Darcy 

vf = C i .  (6) 

If this relation, which in the form of the Poiseuille relation for pressure and gravity flows has the form vf 

= m v  = m A E 2 d 2 e / ( l v ) ,  were observed strictly, then without clogging of the pores, every porous medium could be 

characterized in terms of constant values of de or K. As can be seen from numerous experimental data [2 ], the 

hypothetic formula (6) should be recognized as invalid. In laminar filtration, because of the complexity of the 

filtration process itself (unsteady flow, differences in individual characteristics of the porous media, presence of 

numerous concurrent hydrodynamic phenomena [2 ], etc.), the coefficients or parameters that characterize integral 

properties of the porous medium cannot and must not remain constant in the range Retie=0-2320. All the 

aforementioned statements are confirmed indirectly by the following parameters. In the case of stabilized curvilinear 

liquid flow that is more complicated in comparison with stabilized flows in tubes and channels and less simple in 

comparison with filtration at a fixed curvature parameter (the ratio of the diameter of the coil to the diameter of 

the tube), with increase in the Reynolds number Red, the following resistance zones are changed [3 ]: the zone of 
laminar flow, where curvilinearity of the flow has no effect on the hydraulic resistance; the zone of laminar flow 

with increasing macrovortices, where the resistance is affected not only by the Reynolds number but also by the 

curvature parameter; the zone of transient flow with macrovortices; the zone of a turbulent flow with increasing 

damping of macrovortices, where the hydraulic resistance is affected by the Reynolds number and curvature; the 

zone of turbulent flow, where the curvature no longer affects the resistance. In nonstabilized flow in valve devices 
that is simpler than a filtration flow, five zones of hydraulic resistance are distinguished in [4 ], depending on the 

character of the effect of the Reynolds number Red on the coefficient ~: in the first zone ~ = B / R e d ,  where the flow 

is laminar in the pipeline and in the local resistance; in the second zone ~ -- D / R e ~  , where the laminar flow is 
violated in the local resistance; in the third zone ~ =~Re ~ where the laminar flow is violated in the pipeline too; 
in the fourth and fifth zones ~ - F, where the Reynolds number is low or has no effect on the coefficient ~ at all. 
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Fig. 2. Plot of the effective pore diameter de, mm (1) and the dimensionless 

slope i (2) versus the Reynolds number Rede in the case of filtration of water 

through a filling of polystyrene particles; de = ao+alRede, a0 = 0.6328, a] = 
-8.994.10-3; i = a2Re2e, a2 = 1.633.10 -3. 

In the present work the parameter de, 'complex according to (1) and calculated from formula (4), is used 

to characterize the filtering porous media. Its use as a geometric scale does not require specification of the shape 

of parallel prismatic capillaries. This is very important as the relation between A and the shape of the cross section 

is not single-valued [ 1 ]. 

Existing ideal models are particular cases of the generalized model suggested. At K1 = 1, K1 = (2/3) ~ 

etc., the generalized model becomes the known models of nonintersecting cylindrical capillaries (.4 -- Ad, de = d), 

parallel plane slot pores (A --- 96), etc. The generalized and partial models of the porous medium differ in approaches 

to correlating the characteristics de and dh to the structure of the medium. For example, in the case K 1 = 1, d 

evaluated from formula (4) at de = d is correlated to the pore diameter dp determined by the method of displacement 

of liquid from the pores or pressing mercury into the pores. It should be noted that because dp does not coincide 

with d (dp > d) in generalization of experimental data the parameter d o is preferred but, unfortunately, it does 

not allow the results of investigations [2 ] to be considered as being obtained within the generalized ideal model 

by simple substitution of de for d according to Eq. (4). 

According to definition (1), the complex parameter d e includes both the geometry of the cross-section (in 

terms of dh) and the hydraulic resistance (A in terms of K1). Thus, in the generalized model it is possible to 

evaluate A from formula (1) in terms of de if it is technically feasible to determine the hydraulic diameter dh 

averaged on a certain length. The possibility of its calculation for porous media is determined by the possibility of 

determining the length-average total pore diameter within a real or mentally isolated (not too small) free cross- 

sectional area since determination of the area of the pores themselves is not difficult: the cross-sectional area S is 

multiplied by the clearness coefficient n which is usually assumed to be equal to the porosity m. If processing of 

experimental data is completed by determination of A, this means that, eventually, d e is correlated to both the 

structure of the porous medium in terms of dh and to its main property, the hydraulic resistance, in terms of the 

coefficient KI: A -- AdK-~ 2. 

The physical meaning of the effective pore diameter de is clearer (it includes both the geometry of the 
porous medium and its hydraulic resistance) than the physical meaning of the permeability coefficient K or filtration 

coefficient C. Note also that the deviation of the diameter de from its average value within the range of the numbers 

Rede is always smaller than the deviation of the coefficients K and C. 
Because of the complexity of the filtration process and the diversity of structures of porous media (porous 

rocks, fillings with particles equal and unequal in size and shape, porous media in the form of products from metal 
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powders, fibers, and networks), obtaining a universal relation in the form A =f(Redh) seems unlikely. Under these 

conditions it  is most reasonable and pragmatic to study the behavior of the diameter de as a function of the number 

Rede in the feasible range O...Rede <- 2320 since approximation of experimental data by the relation de = f(Rede) 

will be more objective and less labor-consuming in comparison with their representation in the form of the indirect 

relation A = f ( R e d h ) ,  although the latter is more interesting. 

As an example, in Fig. 2 data are presented on the hydraulic resistance of a filtration flow processed within 

the generalized ideal model of porous media suggested. A pipeline with the diameter 22.4 mm was filled w i t h  

granulated polystyrene in the form of elliptic (with semiaxes of ~ 1 mm and ~ 1.5 mm) cylinders - 3 mm in height, 

providing m = 0.4; a constant level of water in the feeding tank and its closed circulation in the experimental setup 

provided steadiness and isothermicity of pressure filtration; the presence of filling before the first piezometer and 

after the second piezometer prevented the effect of input and output losses of the specific hydraulic energy. One 

should note that at Retie -- 2320 with the average de -- 4.91" 10 -4 m for the experimental conditions (l -- 1.0 m; v = 
1.136.10 -6 m2/sec, and n -- m = 0.4), the losses of the specific hydraulic energy (or the available specific potential 

energy) will be 808 J/kg, which indicates that at Rede approaching even the lower critical value Re~ cr organization 

of experiments is practically impossible. 
It seems likely that using the effective diameter (which is simultaneously a characteristic of porous medium) 

as a characteristic dimension has the same value as the use of the hydraulic diameter dh by hydraulic engineers 
as a geometric scale for noncircular ducts and channels. In this case it is unnecessary to recalculate the results of 

processing in the form of criterial relations for filtrations due to using different geometric scales or their different 

values both within models (ideal and physical ones [2] based on the presentations of porous medium in the form 

of prismatic capillaries and various types of local resistances) and in transition from one model to another. 

N O T A T I O N  

l, length; g, acceleration due to gravity; v and vf, true and fctitious average velocities; AE, friction losses 

of specific hydraulic energy along the length (or available specific potential energy); 2L and ~, Darcy and 

Weisbach coefficients; ReL = vL/v ,  Reynolds number; v, kinematic viscosity; L, characteristic linear dimension; 

d, diameter; dtt = 4S/P,  hydraulic diameter; S, cross-sectional area; P, wetted perimeter; de = Kldh, effective 

diameter; K1 --- (Ad/A)  0"5, shape factor; A = 2LReL, hydraulic resistance at L = dh (A = Ad -~ 64 at L = d and 
L -- de); K and C, permeability coefficient and filtration coefficient; Re Lcr = 2320, lower critical Reynolds number 

at L = d and L = de; i --- AE/( lg) ,  dimensionless slope; m and n, porosity (the ratio of the pore to medium 

volumes) and clearness coefficient (the ratio of the pore to medium areas). 
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